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b-Benzyl-g-butyrolactones were synthesized in four transi-
tion metal catalysed reactions from butynediol, and alkyl-
ated to afford new, biologically active lignan analogues.

Lignans, dimers of phenylpropenes, are ubiquitous secondary
plant metabolites.1 They exhibit notable biological activities, in
particular antiviral,2 cytotoxic3 and canceroprotective4 proper-
ties. Many lignan syntheses have been reported in the past.1,5

Two different strategies were most frequently followed for the
synthesis of butyrolactone lignans 1: 1. oxidative dimerization
of p-hydroxycinnamic acids6 and 2. alkylation of b-benzyl-g-
butyrolactones 2.7 Following these routes, between 6 and 13
steps were necessary to obtain this class of lignans. We reported
recently the Stille coupling8 of unsymmetrically protected
2-tributylstannylbuten-1,4-diols 3 with a variety of benzyl
bromides.9 This coupling reaction was the key step for the
preparation of lactones 2 from butynediol 4 (Scheme 1, Route
A) but several protecting group manipulations were necessary
and the overall yields were low (6–15%). Thus, a regioselective
oxidation of 2-tributylstannylbut-2-en-1,4-diol (5) to lactone 6
was desirable for a short synthesis of lactone 2 (Scheme 1,
Route B). Herein we report the synthesis of lactone 2 using only
four transition metal catalysed reactions. Key step was the
hitherto unknown, regioselective oxidation of diol 5 to lactone
6.10

The palladium catalysed cis-selective addition of tributyl-
stannane to butynediol 4 is well documented.11 The quality of

diol 4 was crucial in this step. Purification of this compound
prior to its use was necessary to obtain diol 5 in 92% yield
(Scheme 2).

The hydroxy group at C(4) of diol 5 can be regioselectively
protected using bulky silyl groups like the TBDMS group.12 We
assumed that selective oxidation of this hydroxy group may
occur if a sterically demanding oxidation reagent like TPAP13 in
conjunction with NMO was employed. The selective oxidation
of a primary hydroxy group in the presence of a secondary using
this oxidation system was reported by Bloch and Brillet14 but a
regioselective oxidation of one of two primary hydroxy groups
has not been published yet.

Treatment of diol 4 with 2.5 equivalents of NMO and 5 mol%
TPAP at rt for 17 h afforded the lactones 6 and 7 in 15% yield
and in a 4+1 ratio (Table 1, entry 1). The major compound
isolated was furane 10 (30%) formed by elimination of water
after initial oxidation to lactol 11 (Scheme 3).

Improved yields and selectivities were achieved when the
initial temperature was below 0 °C and the reaction mixture
gradually warmed to rt over a period of 17 h (entries 2 and 3).
Increasing the amount of TPAP and longer reaction times
produced the lactones 6 and 7 in ca. 50% yield but the

Scheme 1
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Table 1 Reaction conditions for the TPAP-catalysed oxidation of diol 5 to
lactones 6 and 7

Entry TPAP/mol% T/°C t/h Yield (%) Ratio 6+7a

1 5 23 17 15 3,7+1
2 5 230 ? 23 17 21 22+1
3 5 278 ? 23 17 32 22+1
4 7,5 278 ? 23 62 47 25+1
5 10 278 ? 23 62 49 20+1
6 7,5 + 2,5 +2,5 278 ? 23 62 50 5,4+1
a Estimated by 1H NMR spectra of crude reaction products.
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selectivity decreased with higher contents of the oxidation
reagent (entries 4–6).

Lactones 6 and 7 were inseparable by flash chromatography
and were therefore used as a mixture for the Stille coupling.
This reaction was performed with benzyl bromides 8a–h as
described previously.9 The a,b-unsaturated lactones 9a–h were
isolated as isomerically pure compounds (Scheme 2). Sweeney
et al. described recently, that the reaction rates for the Stille
coupling of lactones 6 and 7 with aryl halides are different.15 In
analogy, only lactone 6 reacted with benzyl bromides 8a–h to
the coupling products 9a–h (Table 2).

Hydrogenation of lactones 9a–h to lactones 2a–h were
achieved by means of 10% Pd on charcoal or Ra-Ni T4 (Table
3). The former catalyst, however, gave irreproducible results or
no conversion. Additionally, high pressure (100 bar) and long
reaction times ( > 24 h) were required. With Ra-Ni T4 as
catalyst, complete conversion was found in all cases within 2 h
at 0.1 bar positive pressure.

Alkylation of lactones 2 with benzyl halides using LDA as
base and HMPA as cosolvent provides lactone lignans 1.1,7,16

We found that alkylation using LHMDS as base and DMPU17 as
non-carcinogenic substitute for HMPA afforded lactones 1 in
moderate yields (Scheme 4 and Table 4).

Bioassay of the synthetic lignan analogues using colon-tumor
lines HT29 revealed that compound 1f possesses high cytotoxic
activity (IC50 = 40 mM).18

We have shown that b-benzyl-g-butyrolactones 2 were
effectively synthesised from butynediol 4 in four transition

metal catalysed reactions. Alkylation of these compounds
produced lignan analogues 1 with cytotoxic activities. An
enantioselective route to this class of lignans is in progress.
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Scheme 3

Table 2 Benzyl bromides 8a–h employed for the Stille coupling and yields
of the reaction products 9a–h

Entry Residue (R) Bromide Lactone Yield (%)

1 4-Mesyl-3-methoxy 8a 9a 80
2 3,4,5-Trimethoxy 8b 9b 56
3 4-Methyl 8c 9c 76
4 H 8d 9d 70
5 4-Nitro 8e 9e 24
6 2,4,6-Trimethyl 8f 9f 77
7 3-Methoxy 8g 9g 59
8 3,4-Methylendioxy 8h 9h 45

Table 3 Hydrogenation of the unsaturated lactones 9a–h using different
catalysts

Entry
Unsat.
lactone Product Catalyst p/bar t/h

Yield
(%)

1 9a 2a Pd/C 0.1 14 93
2 9a 2a Ra-Ni T4 0.1 2 98
3 9b 2b Pd/C 0.1 14 0
4 9b 2b Ra-Ni T4 0.1 2 70
5 9c 2c Pd/C 0.1 24 98
6 9d 2d Pd/C 50 48 97
7 9e 2e Pd/C 0.1 14 0
8 9f 2f Pd/C 0.1 14 0
9 9f 2f Pd/C 100 72 88

10 9f 2f Ra-Ni T4 0.1 2 98
11 9g 2g Pd/C 100 14 92
12 9h 2h Pd(OH)2 100 16 0
13 9h 2h Ra-Ni T4 0.1 2 70

Scheme 4

Table 4 Alkylation of lactones 2d,f–h to the symmetrically and un-
symmetrically substituted lignan analogues 1

Entry Lactone Bromide Residue (RA) Lignan Yield (%)a

1 2d 8d H 1d 30
2 2f 8f 2,4,6-Trimethyl 1f 43
3 2f 8h 3,4-Methylendioxy 1fb 25
4 2g 8g 3-Methoxy 1g 18
5 2h 8h 3,4-Methylendioxy 1h 35
a Reaction conditions not optimized.
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